2,828 research outputs found

    Salinity effect and seed priming treatments on the germination of Suaeda salsa in the tidal marsh of the Yellow River estuary

    Get PDF
    The effects of salinity and seed priming treatments (hydropriming, water, KNO3 and KH2PO3) on the germination of the euhalophyte Suaeda salsa in intertidal zone of the Yellow River estuary were investigated. Results show that the seed germination percentage decreased with increasing NaCl concentration, and at the high NaCl level (800 mM), the lowest germination percentage was recorded. At the low NaCl levels, the highest germination rate was observed on day two and the seedling length was promoted slightly. In contrast, the germination delayed and the seedling length decreased at the high salinity. According to the survival functions, we also found that, at the low salinity, the seeds germinated quickly at the initial days and then the germination rate decreased, while few seeds germinated at the initial days at the high salinity. From the results of germination percentage and seedling length, we found that the effect of Yellow river water on germination was similar to the 400 mM NaCl. For priming treatments, the hydropriming has no promotion to the seeds germination, but it promoted the seedling growth at the river water and 400 mM NaCl. Seeds primed with KNO3 could improve the germination at the low salinity, while priming with KH2PO4 could improve the seedling growth at the high salinity, indicating that seed priming with proper nutrient (N, P) solutions could improve the germination or seedling growth as the nutrient (N, P) availability in the soil of S. salsa marsh was very limited.Keywords: Suaeda salsa, germination, salinity, priming, Yellow River estuar

    Protein extraction from the stem of Panax ginseng C. A. Meyer: A tissue of lower protein extraction efficiency for proteomic analysis

    Get PDF
    Ginseng stem, the aerial part of the ginseng is more susceptible to diseases and environmental damages in its long process of growth. Since the molecular mechanism of why ginseng stems are vulnerable remains unclear, the comparison between healthy and pathogen suspicious tissues via proteomics approaches, such as 2-DE, could facilitate the deciphering of the pathogenesis of ginseng and improve ginseng planting industry. A major obstacle for the proteomics study of ginseng stem is the low extraction efficacy of protein due to the properties of its interfering compounds. Here, we tested six different protocols of protein extraction, and identified a protocol that gave us satisfactory yield for 2-DE analysis. The protein extraction was further optimized by chloroform/isoamylol and Tris-saturated phenol extraction that reached the standard of protein purity for 2-DE. Then, using the new extraction protocol, we can efficiently analyze the protein expression patterns of ginseng stem which might provide important information for our understanding of the disease mechanism. Also, our study would lay a foundation for the systematic analysis of the proteomics of ginseng and provide a methodological reference for other similar plant tissues.Key words: Protein extraction, lower protein extraction efficiency, ginsengstem, two-dimensional electrophoresis

    A standing-wave thermoacoustic engine driven by liquid nitrogen

    Get PDF
    Thermoacoustic oscillation at cryogenic temperatures, such as Taconis oscillation, has been typically suppressed in the former studies, and few efforts have been made to enhance it. We proposed a standing-wave thermoacoustic engine (TE) driven by liquid cryogens instead of the conventional heat to enhance the thermoacoustic effects and utilize the cold energy. Experimental and theoretical work has been performed on a self-made standingwave TE to demonstrate the feasibility and the operating characteristics of the engine driven by the liquid nitrogen. Experiments show that with nitrogen at 0.5 MPa as a working gas, a pressure ratio of 1.21 is obtained on the TE driven by liquid nitrogen with a much lower temperature difference along the stack compared to that of the conventional TE. The onset temperature difference decreases by 28.9% with helium at 0.63 MPa as a working gas, compared to that of the conventional TE. This study verifies the feasibility of enhancing the thermoacoustic oscillation at cryogenic temperatures. The TEs driven by liquid cryogens such as liquid nitrogen and liquefied nature gas (LNG), may be an alternative for recovering the cold energy

    Catalytic Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions

    Get PDF
    Catalytic cracking of China no. 3 aviation kerosene using a zeolite catalyst was investigated under supercritical conditions. A three-stage heating/cracking system was specially designed to be capable of heating 0.8 kg kerosene to a temperature of 1050 K and pressure of 7.0 MPa with maximum mass flow rate of 80 g/s. Sonic nozzles of different diameters were used to calibrate and monitor the mass flow rate of the cracked fuel mixture. With proper experiment arrangements, the mass flow rate per unit throat area of the cracked fuel mixture was found to well correlate with the extent of fuel conversion. The gaseous products obtained from fuel cracking under different conditions were also analyzed using gas chromatography. Composition analysis showed that the average molecular weight of the resulting gaseous products and the fuel mass conversion percentage were a strong function of the fuel temperature and were only slightly affected by the fuel pressure. The fuel conversion was also shown to depend on the fuel residence time in the reactor, as expected. Furthermore, the heat sink levels due to sensible heating and endothermic cracking were determined and compared at varying test conditions. It was found that at a fuel temperature of similar to 1050 K, the total heat sink reached similar to 3.4 MJ/kg, in which chemical heat sink accounted for similar to 1.5 MJ/kg

    The EIIIA domain from astrocyte-derived fibronectin mediates proliferation of oligodendrocyte progenitor cells following CNS demyelination.

    Get PDF
    Central nervous system remyelination by oligodendrocyte progenitor cells (OPCs) ultimately fails in the majority of multiple sclerosis (MS) lesions. Remyelination benefits from transient expression of factors that promote migration and proliferation of OPCs, which may include fibronectin (Fn). Fn is present in demyelinated lesions in two major forms; plasma Fn (pFn), deposited following blood-brain barrier disruption, and cellular Fn, synthesized by resident glial cells and containing alternatively spliced domains EIIIA and EIIIB. Here, we investigated the distinctive roles that astrocyte-derived Fn (aFn) and pFn play in remyelination. We used an inducible Cre-lox recombination strategy to selectively remove pFn, aFn or both from mice, and examined the impact on remyelination of toxin-induced demyelinated lesions of spinal cord white matter. This approach revealed that astrocytes are a major source of Fn in demyelinated lesions. Furthermore, following aFn conditional knockout, the number of OPCs recruited to the demyelinated lesion decreased significantly, whereas OPC numbers were unaltered following pFn conditional knockout. However, remyelination completed normally following conditional knockout of aFn and pFn. Both the EIIIA and EIIIB domains of aFn were expressed following demyelination, and in vitro assays demonstrated that the EIIIA domain of aFn mediates proliferation of OPCs, but not migration. Therefore, although the EIIIA domain from aFn mediates OPC proliferation, aFn is not essential for successful remyelination. Since previous findings indicated that astrocyte-derived Fn aggregates in chronic MS lesions inhibit remyelination, aFn removal may benefit therapeutic strategies to promote remyelination in MS.JMJS is recipient of a Junior Scientific Masterclass MD/PhD fellowship from the University Medical Center Groningen. This work was supported by grants from the Netherlands Organization of Scientific Research (NWO, WB, VIDI and Aspasia), the Dutch MS Research Foundation (‘Stichting MS Research’, WB, JMJS, DH), the UK MS Society (CZ, RJMF), and the Research School of Behavioral and Cognitive Neurosciences (BCN, JMJS). Parts of this study were performed at the UMCG Microscopy and Imaging Center (UMIC), which is supported by NWO grants 40-00506-98-9021 and 175-010-2009-023.This is the final version of the article. It was first published by Wiley at http://dx.doi.org/10.1002/glia.2274

    The Search for Higher TcT_c in Houston

    Full text link
    It is a great pleasure to be invited to join the chorus on this auspicious occasion to celebrate Professor K. Alex Mueller's 90th birthday by Professors Annette Bussman-Holder, Hugo Keller, and Antonio Bianconi. As a student in high temperature superconductivity, I am forever grateful to Professor Alex Mueller and Dr. Georg Bednorz "for their important breakthrough in the discovery of superconductivity in the ceramic materials" in 1986 as described in the citation of their 1987 Nobel Prize in Physics. It is this breakthrough discovery that has ushered in the explosion of research activities in high temperature superconductivity (HTS) and has provided immense excitement in HTS science and technology in the ensuing decades till now. Alex has not been resting on his laurels and has continued to search for the origin of the unusual high temperature superconductivity in cuprates.Comment: Dedicated to Alex Mueller, whose "important breakthrough in the discovery of superconductivity in ceramic materials" in 1986 has changed the world of superconductivit

    The mRNA expression of SETD2 in human breast cancer: Correlation with clinico-athological parameters

    Get PDF
    BACKGROUND: SET domain containing protein 2 (SETD2) is a histone methyltransferase that is involved in transcriptional elongation. There is evidence that SETD2 interacts with p53 and selectively regulates its downstream genes. Therefore, it could be implicated in the process of carcinogenesis. Furthermore, this gene is located on the short arm of chromosome 3p and we previously demonstrated that the 3p21.31 region of chromosome 3 was associated with permanent growth arrest of breast cancer cells. This region includes closely related genes namely: MYL3, CCDC12, KIF9, KLHL18 and SETD2. Based on the biological function of these genes, SETD2 is the most likely gene to play a tumour suppressor role and explain our previous findings. Our objective was to determine, using quantitative PCR, whether the mRNA expression levels of SETD2 were consistent with a tumour suppressive function in breast cancer. This is the first study in the literature to examine the direct relationship between SETD2 and breast cancer. METHODS: A total of 153 samples were analysed. The levels of transcription of SETD2 were determined using quantitative PCR and normalized against (CK19). Transcript levels within breast cancer specimens were compared to normal background tissues and analyzed against conventional pathological parameters and clinical outcome over a 10 year follow-up period. RESULTS: The levels of SETD2 mRNA were significantly lower in malignant samples (p = 0.0345) and decreased with increasing tumour stage. SETD2 expression levels were significantly lower in samples from patients who developed metastasis, local recurrence, or died of breast cancer when compared to those who were disease free for > 10 years (p = 0.041). CONCLUSION: This study demonstrates a compelling trend for SETD2 transcription levels to be lower in cancerous tissues and in patients who developed progressive disease. These findings are consistent with a possible tumour suppressor function of this gene in breast cancer

    Neural mechanisms of 1-back working memory in intellectually gifted children

    Get PDF
    To investigate the neural mechanisms underlying intellectually gifted children, electroencephalograms (EEG) were recorded while 13 intellectually gifted children and 13 average children accomplished a 1-back working memory task. The results showed that intellectually gifted children elicited significantly shorter P3 latency than their intellectually average peers. These results support the neural efficiency theory that intellectually gifted individual can use their brain more efficiently

    Identification of catabolite control protein A from Staphylococcus aureus as a target of silver ions

    Get PDF
    Staphylococcus aureus is one of the most common pathogenic bacteria that causes human infectious diseases. The emergence of antibiotic-resistant strains of S. aureus promotes the development of new anti-bacterial strategies. Silver ions (Ag+) have attracted profound attention due to their broad-spectrum antimicrobial activities. Although the antibacterial properties of silver have been well known for many centuries, its mechanism of action remains unclear and its protein targets are rarely reported. Herein, we identify the catabolite control protein A (CcpA) of S. aureus as a putative target for Ag+. CcpA binds 2 molar equivalents of Ag+ via its two cysteine residues (Cys216 and Cys242). Importantly, Ag+ binding induces CcpA oligomerization and abolishes its DNA binding capability, which further attenuates S. aureus growth and suppresses a-hemolysin toxicity. This study extends our understanding of the bactericidal effects of silver.published_or_final_versio

    Synthesis and Application of Carbon–Iron Oxide Microspheres’ Black Pigments in Electrophoretic Displays

    Get PDF
    Carbon–iron oxide microspheres’ black pigments (CIOMBs) had been prepared via ultrasonic spray pyrolysis of aqueous solutions containing ferrous chloride and glucose. Due to the presence of carbon, CIOMBs not only exhibited remarkably acid resistance, but also could be well dispersed in both polar solvents and nonpolar solvent. Finally, dispersions of hollow CIOMBs in tetrachloroethylene had successfully been applied in electrophoretic displays
    corecore